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Abstract- In computer vision technology, visual surveillarspecially for humans and vehicles is currently one
of the most active research topics. It has a priognigpplication in human identification and anonuslo
behaviors. Generalized framework of visual suraeile in dynamic scenes includes the following stage
environment and its modeling, detection of motidassification of moving objects, tracking, undargting and
description of behaviors, human identification. this paper the review recent developments and gener
strategies of all these stages are clarified. Bindl analysis over possible research directiang, the person
detection is the first step to person identificatémd accordingly the work has been proceeded.

Index Terms-Motion Detection; Personal Identification; Trackiagd Visual Surveillance.

1. INTRODUCTION Unfavorable conditions, such as illumination vacen
Visual surveillance in dynamic scenes attempts tshadows and shaking branches, bring many diffiesilti
detect, recognize and track certain objects fromgen for acquiring and updating the background images.
sequences, and most probably to understand and

describe object behaviors. The aim is to develoB. Motion Segmentation

intelligent visual surveillance to replace the ttiattal Motion segmentation in frame sequences aims at
video surveillance that is providing ineffective the detecting regions corresponding to moving objects
number of cameras exceeds the capability of humauch as vehicles and humans. Detecting moving
operators to monitor them. In short, the goal suai regions provides a focus of attention for later
surveillance is not only to put cameras in the @lat processes such as tracking and behavior analysis
human eyes, but also to accomplish the entileecause only these regions are consider in the late
surveillance system fully automatic. It has wideprocess. At present, most segmentation methods use
applications, such as traffic surveillance, seguriteither temporal or spatial information in the image
guard for important buildings, etc. In this papersequence. The dynamic neural-fuzzy approach is used
applications involving the surveillance of peoptas for segmentation of moving objects in dynamic
vehicles which include the full range of surveitan backgrounds [1]. Segmentation is carried out byyuz

methods are induced. c-means algorithm which allows the feature vector t
have multiple membership grades to multiple clisster
2. MOTIONDETECTION [4]. K means clustering is a method of cluster gsial

Mostly every visual surveillance system starts wittwhich partition n observations into k clusters ihigh
motion detection. In Motion detection main aim iseach observation belongs to the cluster with the
region segmenting corresponding to moving objectaiearest mean [7]. Learning Algorithm Segmentation i
Tracking and behavior recognition are greatlythis weights and biases are updated using the data
dependent on motion detection. The process of motimbtained in the pre-processing. This process is
detection usually involves environment modelingrepeated as many times as necessary in order ¢goghav

motion segmentation, and object classification. trained network [9]. The recursive flooding method
detects clusters by “flooding” the “landscape” give
A. Environment Modeling by the Clusot surface [20]. Detaching the moving

The active construction and updating of environrakent Objects using fuzzy logic inference system whicsetu
models are indispensable to visual surveillancezfu multiple sources of information together for detsi
Extreme Learning Machine for Single Hidden layefmaking and create a fuzzy silhouette dyevel cut
Feed- forward neural networks (SLFNs) automaticall{23]. Several conventional approaches for motion
find the threshold value for the given video seqeen Segmentation are outlined in the following.

to detect the moving object, which is appropriaie f

Dynamic Environment [33]. For fixed cameras, thel) Background subtraction:Background subtraction
key problem is to automatically recover and update is a popular method for motion segmentation,
background images from a dynamic sequence. relatively in static background. It detects moving
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2)

3)

C. Object Classification
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regions in an image by taking the differencémage sequences captured by surveillance cameras
between the current image and the referencmounted in road traffic scenes probably include
background image in a pixel-by-pixel fashion.Théhumans, vehicles and other moving objects such as
stopped foreground subtraction (SFS) algorithm ianimals and birds etc. At present, there are twin ma
implemented for an incoming pixel in sequenceategories of approaches for classifying moving

frame adopting the stopped layering mechanisnobjects.

with L layers which is used for constructing the
moving foreground model [5]. Mti-scale image 1)
feature maps of color, intensity, and orientation
are extracted, and local spatial contrast is
estimated for each feature at each location,
providing a separate conspicuity map for each
feature. Such maps are combined to a single
topographical saliency map that guided the
attention focus in a bottom-up manner [Ghe
Least Median of Squares method is used to
construct the background which is insensitive to
changes of color and texture of clothes therefore
use binary silhouette [18]. The background
subtraction and update procedureis done by SOM
which find the Best Match to Current Sample and
employ the Euclidean distance of vectors in the
HSV color hex cone that gives the distance
between two pixels [12]. The background mode )
initialization presented in this study is dependin
on stationary pixel intensity value is brightness
value which has the highest redundancy ratio on
intensity values taken from a training sequence.
Each intensity values taken by the pixel location

in the training sequence is compared with the
intensity values taken hitherto [16]. An NN
architecture used as a Bayesian classifier, based
on the Parzen estimation to store the model of the
background within its weights [14].

Temporal differencing: Temporal differencing
makes use of the pixel-wise differences between
two or three consecutive frames in an image
sequence to extract moving regions. Temporal
differencing is very adaptive to dynamic3-

Shape-based classification: Different descriptions

of shape information of motion regions such as
points, boxes, silhouettes and blobs are available
for classifying moving objects. A pixel is
classified according to bin size in the histogram
and its Intensity channel of the model [3]. The
approach for moving cast shadow detection is
proved to be quite accurate and suitable for
moving object detection [12]. The probabilistic
segmentation algorithm is to classify the pixels
such as intensity or red, green, or blue (RGB)
color components can be used as basis for
segmentation [14]. Human motion analysis is
concerned with detecting periodic motion
signifying a human gait and acquiring
descriptions of human body pose over time [25].
Motion-based classification:In general, non-rigid
articulated human motion shows a periodic
property, which can be used for classification of
moving objects. The Multilayer Perceptron NN to
perform both object classification and scene
understanding [29]. Data points lying near each
other in the input space are mapped onto nearby
map units. Distances between and all the
prototype vectors are computed which best
matching unit (BMU) [21]. An FFT-based
implementation of cross-correlation is used that
computes the correlation at all pixel
displacements between the two templates [22].

OBJECT TRACKING

environments, but generally does a poor job dhfter motion detection, surveillance systems gelhera
extracting all the relevant pixels, e.g., there majfack moving objects from one frame to anotherrin a
be holes left inside moving entities. TemporalMage sequence. During processing the tracking
Median Filter compiles the temporal medianalgo_nthms usgally have_con_5|derable mters_ectldh_ w
value of the pixels using the long-term timer andnotion detection. Tracking involves matching obgect

the short-term timer [8].
Optical flow: Optical-flow-based

in consecutive frames using features such as points
motion lines or blobs. Tracking methods are divided irttorf

segmentation uses characteristics of flow vectof®@&jor categories: region-based tracking, active-
of moving objects over time to detect movingcontour-based tracking, feature based tracking, and

regions in an image sequence. The displacemefpdel-based tracking.

vector field to initialize a contour based tracking

algorithm, called active rays, for the extractidn oA. Region-Based Tracking

articulated objects.

Image Segmentation is dorfeegion-based tracking algorithms track objects thase

by FCM Clustering Algorithm. Successful resultson variations of the image regions corresponding to

have been reported for image segmentation usiige moving objects.
maintained dynamically and motion

such algorithm [32].

The background image is
regions are

detected by subtracting the background from the

current image. The use of small blob featuresdoktr

Different moving regions may correspond to diffaren@ Single human in an indoor environment. In their
moving targets in natural scenes. For instance, th¥ork, a human body is considered as a combination o
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some blobs respectively representing various bodyodel-based tracking algorithms track objects by
parts such as head, torso and the four limbs. Theatching projected object models, produced witbrpri

proposed Semantic Modelling technique is creatingnowledge, to image data. The basic ICA model
the road model which is used for obstacle detectiodescribes how the observed mixture signals are
E.g. histogram has been used for creating the rogeénerated by a process that uses the mixing matrix

model [3]. The obtained self-organizing neuralmix the latent source signals and get matched bbjec
network is organized as a 3-D grid of neurongl10]. The basic idea in model-based approach ctnsis
producing a representation of training samples witbf keeping a model of foreground objects and
lower dimensionality, with the same time preservinglassifying as stopped objects those whose model
topological neighborhood relations of the inputolds the same features for several consecutive
patterns [5]. frames; remaining foreground objects are

consequently classified as moving objects [5].

B. Active Contour-Based Tracking

Active contour-based tracking algorithms track atje 4. PERSONAL IDENTIFICATION FOR

by representing their outlines as bounding contours VISUAL SURVEILLANCE

and updating these contours dynamically in suceessiThe problem of “who is now entering the area under

frames. The TNNs to make navigation safer bgurveillance” is of increasing importance for visua

detecting the contour of different possible objectsurveillance. Such personal identification can be

[9].The contour projection analysis with shapdreated as a special behavior-understanding problem

analysis is used to remove the shadow effect [35]. Human face and gait are now regarded as the main
biometric features that can be used for personal

C. Feature-Based Tracking identification in visual surveillance systems

Feature-based tracking algorithms perform recogmiti

and tracking of objects by extracting eIementsA_ Model-Based Methods

clustering them into higher level features and then1 model-based methods, parameters are to be

matching the features between images [13]. Tr}%easured such as joint trajectories, limb lengaimsl
Spatio-temporal interest points (Mo-SIFT) is used tangular speeds J ) '

select the object of interest (OBI), as horizostaide
and vertical distance are extracted from the binarg -

images by tracking its motion [2]. Semantic cona&pt ~- Stat|st_|cal Methods . :

motion describes a class of behaviors for objec Statls_t|cal recpg_nmon t_ec_hmques . usually
tracking [17]. The winner neuron and all the nesronCharacterize the statistical descrlpt_lon of moim_age .
in its neighborhood may adapt their codebook vectoPSt Wr."_Ch will be developed in _automatic  gait
for object tracking [20]. Feature representation2y recognition. The purpose of PCA training is to abta

silhouette image can be converted to a 1D vecttr Wiseveral principal components to represent the ralgi

the same dimension in a row-scan manner f&ait features fro_m a _high—dimensional measurement
trajectory comparing [28]. With the external pointsSPace to & low-dimensional Eigen space [18].

and angle between them this tracking algorithm

works. Thick and thin white lines separately repres C. Physical-Parameter-Based Methods

their trajectories produced by tracking algorithb6][ Physical-parameter-based methods make use of
A pixel surrounded by foreground labels should@eometric structural properties of a human body to
receive a foreground label than a pixel withcharacterize a person’s gait pattern. The parameter
background neighbors which can be accomplished Biped include height, weight, stride cadence angtiten
Markov random field [11].The features used in globa€tc. The two-point Gait segmentation statistics of
feature-based  algorithms  include  centroidsoptical flow, achieve a highly discriminative, bedy
perimeters, areas, some orders of quadrature’s apldePe robust representation of human gait [26].
colors. A person is bounded with a rectangular boRegion is denoted by the 2D coordinates of the
whose centroid is selected as the feature for imgck centroid, P, a ratio between the total number of
The features used in local feature-based algorithnfi@greground pixel¢T) and the size of the bounding box
include line segments, curve segments, and cornd?), R = T=B, and the color/gray level characteristic,
vertices, etc. Position table for each index cdntrd?- The position plus predicted velocity of the regio
points are present which have six different pofots €Xit/enter from/to scene are easily used for
||p’ 6 control points for r|ght eye, 6 control pmrfor determining to have exited/entered the scene [16]

left eye Bezier curve, left eye height and widiip, |

height and width and also right eye height and lwidtD. Fusion of Gait with Other Biometrics

which examines the action of the people [27]. The fusion of gait information with other
biometrics can further increase recognition robessn
D. Model-Based Tracking and reliability. For optimal face recognition, thegt a

virtual camera to capture the frontal face. Gaitley
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analysis serves two important functions. First, itliscussed four intensively studied approaches to
determines the frequency and phase of each obsenteacking: region based, active-contour based, featu
gait sequence. Secondly, it provides data redudtion based, and model based. As to personal identificati
summarizing the sequence with a small number @t a distance, we have divided gait recognition
prototypical key frames [22]. Adaboost machinanethods into four classes: mode based, statistics,
learning to choose useful features from thehysical-parameter based, and gait based. At tde en
HOG.Adaboost is composed of simple wealof this survey, a research work is person idertiftn
classifiers and decides the weights and get resgonsith the help of gait and biometric method.
[34].
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